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ABSTRACT

The engineering of modern transportation systems is severely constrained by the cost of repeatedly modeling
and solving complex optimization problems. Yet this challenge presents a timely opportunity: to leverage
artificial intelligence (Al) as a partner to optimization to enable more responsive, innovative, confident and
accountable analysis. As a case study of using Al to inform transportation policy, the talk presents the first
prospective impact assessment of city-scale eco-driving, which uses deep reinforcement learning (RL) to reveal
that optimizing vehicle speeds at intersections can reduce emissions by 11-22% without sacrificing throughput
or safety. At the same time, significant gaps remain before Al for Optimization is ready for practitioners; for
instance, studies like the case study expose the brittleness of deep RL to small changes in network structure
or demand. This motivates two emerging research directions: (1) task-space RL, which explicitly reasons about
the training and generalization structure of problem distributions, leading to 10-30x more sample-efficient
methods, and (2) learning-guided optimization, which uses machine learning to specialize classical
optimization to problem distributions, leading to 2-10x faster methods. Together, these approaches
demonstrate how Al for Optimization can transform how we design, operate, and govern complex systems—
from transportation to logistics and beyond.
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