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ABSTRACT

The engineering of modern transportation systems is severely constrained by the cost of repeatedly modeling 
and solving complex optimization problems. Yet this challenge presents a timely opportunity: to leverage 
artificial intelligence (AI) as a partner to optimization to enable more responsive, innovative, confident and 
accountable analysis. As a case study of using AI to inform transportation policy, the talk presents the first 
prospective impact assessment of city-scale eco-driving, which uses deep reinforcement learning (RL) to reveal 
that optimizing vehicle speeds at intersections can reduce emissions by 11–22% without sacrificing throughput 
or safety. At the same time, significant gaps remain before AI for Optimization is ready for practitioners; for 
instance, studies like the case study expose the brittleness of deep RL to small changes in network structure 
or demand. This motivates two emerging research directions: (1) task-space RL, which explicitly reasons about 
the training and generalization structure of problem distributions, leading to 10-30x more sample-efficient 
methods, and (2) learning-guided optimization, which uses machine learning to specialize classical 
optimization to problem distributions, leading to 2-10x faster methods. Together, these approaches 
demonstrate how AI for Optimization can transform how we design, operate, and govern complex systems—
from transportation to logistics and beyond.
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