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ABSTRACT

A core challenge in scientific machine learning is how to learn from limited, noisy, or strategically chosen 
data. This talk presents the mathematics of sparse sensing—the problem of choosing maximally 
informative measurements for high-dimensional estimation and control. Sensor placement defines a 
highly nonconvex optimization landscape and, in general, is NP-hard. Existing methods provide limited 
insight into the underlying landscape of sensing objectives. Our framework characterizes this landscape 
explicitly: at each iteration, it yields a spatial map of the objective, revealing how information gain varies 
across possible sensor locations.



We formulate this problem through the lens of statistical mechanics, deriving a Hamiltonian whose 
minima corresponds to optimal sensor configurations under uncertainty and physical constraints. This 
approach unifies ideas from information theory, D-optimal design, and statistical physics, producing 
scalable algorithms with estimation guarantees. The resulting methods enable robust field reconstruction 
and uncertainty quantification in safety-critical environments, while exposing structure in the dynamics of 
physical systems. These ideas further extend to nonlinear system identification, where sparse discovery 
of governing equations (SINDy) can be interpreted as a learning problem with an underlying energy 
landscape.
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