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Abstract:  In large-scale data science, we train models for datasets containing massive numbers of 

samples. Training is often formulated as the solution of empirical risk minimization (ERM) problems 

which are optimization programs whose complexity scales with the number of elements in the dataset. 

This motivates the use of stochastic optimization techniques which, alas, come with their own set of 

limitations. In this talk, we will discuss recent developments to accelerate the convergence of stochastic 

optimization through the exploitation of second-order information. In particular, we present stochastic 

variants of quasi-Newton methods which approximate the curvature of the objective function using 

stochastic gradient information. We will explain how this leads to faster convergence and introduce an 

incremental method that exploits memory to achieve a superlinear convergence rate. This is the best-

known convergence rate for a stochastic optimization method. We will also cover adaptive sample size 

schemes which rethink ERM as a collection of nested ERM problems in which the dataset grows at a 

geometric rate -- as opposed to stochastic methods in which samples are processed sequentially. We 

show how second-order versions of adaptive sample size methods are guaranteed to solve ERM 

problems to their statistical accuracy in just two passes over the dataset. We further extend this idea to 

the nonconvex setting to come up with computationally efficient methods for finding a local minimizer 

of ERM problems when the population risk is strongly Morse. 
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